Data Engineering Podcast


This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.

Support the show!

03 September 2018

An Agile Approach To Master Data Management with Mark Marinelli - Episode 46 - E46

Rewind 10 seconds
1X
Skip 30 seconds ahead
0:00/0:00

Share on social media:


Summary

With the proliferation of data sources to give a more comprehensive view of the information critical to your business it is even more important to have a canonical view of the entities that you care about. Is customer number 342 in your ERP the same as Bob Smith on Twitter? Using master data management to build a data catalog helps you answer these questions reliably and simplify the process of building your business intelligence reports. In this episode the head of product at Tamr, Mark Marinelli, discusses the challenges of building a master data set, why you should have one, and some of the techniques that modern platforms and systems provide for maintaining it.

Preamble

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute.
  • You work hard to make sure that your data is reliable and accurate, but can you say the same about the deployment of your machine learning models? The Skafos platform from Metis Machine was built to give your data scientists the end-to-end support that they need throughout the machine learning lifecycle. Skafos maximizes interoperability with your existing tools and platforms, and offers real-time insights and the ability to be up and running with cloud-based production scale infrastructure instantaneously. Request a demo at dataengineeringpodcast.com/metis-machine to learn more about how Metis Machine is operationalizing data science.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch.
  • Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat
  • Your host is Tobias Macey and today I’m interviewing Mark Marinelli about data mastering for modern platforms

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by establishing a definition of data mastering that we can work from?
    • How does the master data set get used within the overall analytical and processing systems of an organization?


  • What is the traditional workflow for creating a master data set?

    • What has changed in the current landscape of businesses and technology platforms that makes that approach impractical?
    • What are the steps that an organization can take to evolve toward an agile approach to data mastering?


  • At what scale of company or project does it makes sense to start building a master data set?

  • What are the limitations of using ML/AI to merge data sets?

  • What are the limitations of a golden master data set in practice?

    • Are there particular formats of data or types of entities that pose a greater challenge when creating a canonical format for them?
    • Are there specific problem domains that are more likely to benefit from a master data set?


  • Once a golden master has been established, how are changes to that information handled in practice? (e.g. versioning of the data)

  • What storage mechanisms are typically used for managing a master data set?

    • Are there particular security, auditing, or access concerns that engineers should be considering when managing their golden master that goes beyond the rest of their data infrastructure?
    • How do you manage latency issues when trying to reference the same entities from multiple disparate systems?


  • What have you found to be the most common stumbling blocks for a group that is implementing a master data platform?

    • What suggestions do you have to help prevent such a project from being derailed?


  • What resources do you recommend for someone looking to learn more about the theoretical and practical aspects of data mastering for their organization?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast


Share on social media:


Listen in your favorite app:



More options

Here are shows you might like

See show recommendations
AI Engineering Podcast
Tobias Macey
The Python Podcast.__init__
Tobias Macey